New Similarity Function for Scientific Articles Clustering Based on the Bibliographic References

Authors

  • Lisvandy Amador Penichet Instituto de Biotecnología de las Plantas, Universidad Central “Marta Abreu" de Las Villas
  • Damny Magdaleno Guevara Departamento de Computación, Universidad Central “Marta Abreu" de Las Villas
  • María Matilde García Lorenzo Departamento de Computación, Universidad Central “Marta Abreu" de Las Villas

DOI:

https://doi.org/10.13053/cys-22-1-2763

Keywords:

Scientific paper, similarity function, clustering.

Abstract

The amount of scientific information available on the Internet, corporate intranets, and other media is growing rapidly. Managing knowledge from the information that can be found in scientific publications is essential for any researcher. The management of scientific information is increasingly more complex and challenging, since documents collections are generally heterogeneous, large, diverse and dynamic. Overcoming these challenges is essential to give to the scientists the best conditions to manage the time required to process scientific information. In this work, we implemented a new similarity’s function for scientific articles' clustering in based on the information provided by the references of the articles. The use of this function contributes significantly to discover relevant knowledge from scientific literature.

Author Biography

Lisvandy Amador Penichet, Instituto de Biotecnología de las Plantas, Universidad Central “Marta Abreu" de Las Villas

Reserva Científica, Dirección de Postgrado y Gestión de la Información.

Downloads

Published

2018-03-30