LinearTag Models: Recommendations Using Linear User Profiles Based on Tags
DOI:
https://doi.org/10.13053/cys-21-1-2579Keywords:
Collaborative tagging systems, recommender systems, tagging.Abstract
Recommender systems allow the exploration of large collections of products, the discovery of patterns in the products, and the guidance of users towards products that match their interests. Collaborative tagging systems allow users to label products in a collection using a free vocabulary. The aggregation of these tags, also called a Folksonomy, can be used to build a collective characterization of the products in a simple and recognizable vocabulary. In this paper, we propose a family of methods called LinearTag recommenders, which infer users preferences for tags to formulate recommendations for them. We dubbed these inferred user profiles as TagProfiles. We present experiments using them as an interaction artifact that allows users to receive new recommendations as they delete, add or reorder tags in their profiles. Additional experiments using the Movielens dataset, show that the proposed methods generate recommendations with an error margin similar, or even lower than the results reported by methods based on latent factors. Next, we compared TagProfiles against KeywordProfiles, which are profiles based on keywords extracted automatically from textual descriptions of products. This comparison showed that TagProfiles are not only more precise in their predictions, but they are also more understandable by users. At last, we developed a user interface of a movie recommender based on TagProfiles, which we tested with 25 users. This experience showed that TagProfiles are easier to understand and modify by users, allowing them to discover new movies as they interact with their profiles.Downloads
Published
2017-03-21
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.