Microcalcifications Detection Using Image Processing
DOI:
https://doi.org/10.13053/cys-22-1-2560Keywords:
Microcalsification, image processing, breast cancerAbstract
Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. In this work, an effective methodology to detect microcalcifications in digitized mammograms is presented. This methodology is based on the synergy of image processing, pattern recognition and artificial intelligence. The methodology consists in four stages: image selection, image enhancement and feature extraction based on mathematical morphology operations applying coordinate logic filters, image segmentation based on partitional clustering methods such as k-means and self organizing maps and finally a classifier such as an artificial metaplasticity multilayer perceptron. The proposed system constitutes a promising approach for the detection of Microcalcifications. The experimental results show that the proposed methodology can locate Microcalcifications in an efficient way. The best values obtained in the experimental results are: accuracy 99.93% and specificity 99.95%, These results are very competitive with those reported in the state of the art.Downloads
Published
2018-03-30
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.