Extract Reliable Relations from Wikipedia Texts for Practical Ontology Construction
DOI:
https://doi.org/10.13053/cys-20-3-2454Keywords:
Information classification, information extraction, feature-based, relatedness information, ontology building.Abstract
A feature based relation classification approach is presented in this paper. We aimed to exact relation candidates from Wikipedia texts. A probabilistic and a semantic relatedness features are employed with other linguistic information for the purpose. The experiments show that, relation classification using the proposed relatedness features with surface information like word and part-of-speech tags is competitive with or even outperforms the one of using deep syntactic information. Meanwhile, an approach is proposed to distinguish reliable relation candidates from others, so that these reliable results can be accepted for knowledge building without human verification. The experiments show that, with the relation classification approach presented in this paper, more than 40% of the classification results are reliable, which means, at least 40% of the human and time costs can be saved in practice.Downloads
Published
2016-09-30
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.