Branching Path Planning with Modal Logics
DOI:
https://doi.org/10.13053/cys-21-3-2444Keywords:
Path planning, temporal logics, modal logics, model checking.Abstract
Path planning concerns about finding a route for an agent, such that this agent move along the route from an initial to a final goal. Some additional constraints may also have to be satisfied for the agent, such as avoiding obstacles or collisions. Path planning has been recently studied in the context of linear temporal logic with great success. Expressive constraint specifications involving temporal ordering can be succinctly expressed by logic formulas, whereas environments are abstracted as transition systems. The plan is obtained by counterexample generation in a model checking tool: finding a path, if any, such that a given formula (constraints) satisfies a given model (agent environment). Due to the expressive power of linear temporal logic, only linear planning has mostly been considered so far, that is, plans corresponding to tasks to be performed in a linear successive order. In this work, we study branching shaped (tree) plans in the context of the μ-calculus, an expressive modal logic which subsumes many program logics such as LTL, PDL and CTL. Branching plans can be succinctly expressed by logic formulas so that a team of mobile devices can concurrently satisfy the plan. In the current work, we provide a plan generator based on a model checking algorithm for the μ-calculus. We show the algorithm is sound and complete, that is, for any environment, there a satisfying plan for a given set of constraints, if and only if, the plan generator succeeds.Downloads
Published
2017-09-28
Issue
Section
Articles of the Thematic Issue
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.