Recognizing Textual Entailment by Soft Dependency Tree Matching
DOI:
https://doi.org/10.13053/cys-19-4-2331Keywords:
textual entailment, dependency parsing, dependency relation matching, rules, PETE datasetAbstract
We present a rule-based method for recognizing entailment relation between a pair of text fragments by comparing their dependency tree structures. We used a dependency parser to generate the dependency triples of the text–hypothesis pairs. A dependency triple is an arc in the dependency parse tree. Each triple in the hypothesis is checked against all the triples in the text to find a matching pair. We have developed a number of matching rules after a detailed analysis of the PETE dataset, which we used for the experiments. A successful match satisfying any of these rules assigns a matching score of 1 to the child node of that particular arc in the hypothesis dependency tree. Then the dependency parse tree is traversed in post-order way to obtain the final entailment score at the root node. The scores of the leaf nodes are propagated from the bottom of the tree to the non-leaf nodes, up to the root node. The entailment score of the root node is compared against a predefined threshold value to make the entailment decision. Experimental results on the PETE dataset show an accuracy of 87.69% on the development set and 73.75% on the test set, which outperforms the state-of-the-art results reported on this dataset so far. We did not use any other NLP tools or knowledge sources, to emphasize the role of dependency parsing in recognizing textual entailment.Downloads
Published
2015-12-18
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.