Smoothing the High Level Canonical Piecewise-Linear Model by an Exponential Approximation of its Basis-Function
DOI:
https://doi.org/10.13053/cys-20-2-2290Keywords:
High-Level-Canonical, piecewise-linear, smoothing, basis-function, approximation.Abstract
Piecewise-linear models constitute an attractive alternative to construct a function whose graph fits a finite set of discrete points. These models are preferably selected over other approximation strategies like polynomials or splines. Although there are several piecewise-linear models reported in literature, the so-called High Level Canonical has the remarkable advantage of emerging from a well-structured algorithmic methodology to efficiently determine the parameters of any given piecewise-linear function. However, as it happens in all other piecewise-linear models, it also has the problem of lack of differentiability at the breakpoints. In order to solve this problem, an approach based on an exponential approximation of the basis-function is proposed as a strategy to transform the High Level Canonical piecewise-linear model into a smooth-piecewise one. This mathematical transformation ensures the existence and continuity of the nth-order derivatives of the resulting smooth model. Besides of this, it is observed that by applying the piecewise-linear to smooth transformation, the number of terms of the resulting smooth representation can significantly be reduced due to a great number of them can be approximated by a line equation. In order to verify the effectiveness of this proposal, numerical simulations performed on one-dimensional and two-dimensional functions are reported.Downloads
Published
2016-06-25
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.