Trajectory Graphs Appearing from the Skein Problems at the Hypercube
DOI:
https://doi.org/10.13053/cys-20-1-2061Keywords:
Independence problem in graph theory, Berge graphs, doubly-exponential growthAbstract
We formally state Skein Problems in Hamiltonian graphs and prove that they are reduced to the Independence Problem in Graph Theory. Skein problems can be widely used in cryptography, particularly, in protocols for message authentication or entities identification. Let G be a Hamiltonian graph. Given a Hamiltonian cycle H, let be a set of pairwise disjoint sub-paths within H, P1 = [v11, : : : , vm1], : : : , Pk = [v1k, : : : , vmk] where m and k are two positive integers, then the pairs of extreme vertices V = f(v11, vm1), : : : , (v1k, vmk)g are connected by the paths at without any crossing. Conversely, let us assume that the following problem is posed: given a collection of pairs V it is required to find a collection of pairwise disjoint paths, without any crossing, connecting each pair at V . We reduce this last problem to the Independence Problem in Graph Theory. In particular, for the case of the n-dimensional hypercube, we show that the resulting translated instances are not Berge graphs, thus the most common polynomial-time algorithms to solve the translated problem do not apply. We have built a computing system to explicitly generate the resulting graphs of the reduction to the Independence problem. Nevertheless, due to the doubly exponential growth in terms of n of these graphs, the physical computational resources are quickly exhausted.Downloads
Published
2016-03-31
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.