Unsupervised Learning for Syntactic Disambiguation
DOI:
https://doi.org/10.13053/cys-18-2-1993Keywords:
Natural language processing, syntactic parsing, syntactic disambiguation, unsupervised machine learningAbstract
We present a methodology framework for syntactic disambiguation in natural language texts. The method takes advantage of an existing manually compiled non-probabilistic and non-lexicalized grammar, and turns it into a probabilistic lexicalized grammar by automatically learning a kind of subcategorization frames or selectional preferences for all words observed in the training corpus. The dictionary of subcategorization frames or selectional preferences obtained in the training process can be subsequently used for syntactic disambiguation of new unseen texts. The learning process is unsupervised and requires no manual markup. The learning algorithm proposed in this paper can take advantage of any existing disambiguation method, including linguistically motivated methods of filtering or weighting competing alternative parse trees or syntactic relations, thus allowing for integration of linguistic knowledge and unsupervised machine learning.Downloads
Published
2014-06-30
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.