FPGA-Based Emulation of a Synchronous Phase-Coded Quantum Cryptography System
DOI:
https://doi.org/10.13053/cys-19-1-1549Keywords:
FPGA, quantum cryptography, emulationAbstract
We present FPGA-based emulation of a synchronous phase-coded quantum cryptography system. Several of the emulated subsystems are used for implementation in a free space demonstrative QPSK scheme for quantum key distribution with continuous variables (CV-QKD) using a base and optical phase synchronization. The CV-QKD systems are commonly implemented using QPSK modulation with switched or simultaneous detection. In this paper we only make use of one base of the QPSK system in order to get a simpler modulation (BPSK) scheme, used for demonstrative purposes. The reported results from the emulation and the experiment in terms of Quantum Bit Error Rate (QBER) and mutual information for different values of the number of photons per bit are in good agreement.Downloads
Published
2015-03-27
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.