Attribute and Case Selection for NN Classifier through Rough Sets and Naturally Inspired Algorithms
DOI:
https://doi.org/10.13053/cys-18-2-1540Keywords:
Nearest neighbor, case selection, attribute selectionAbstract
Supervised classification is one of the most active research fields in the Artificial Intelligence community. Nearest Neighbor (NN) is one of the simplest and most consistently accurate approaches to supervised classification. The training set preprocessing is essential for obtaining high quality classification results. This paper introduces an attribute and case selection algorithm using a hybrid Rough Set Theory and naturally inspired approach to improve the NN performance. The proposed algorithm deals with mixed and incomplete, as well as imbalanced datasets. Its performance was tested over repository databases, showing high classification accuracy while keeping few cases and attributes.Downloads
Published
2014-06-30
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.