Feature Selection for Microarray Gene Expression Data Using Simulated Annealing Guided by the Multivariate Joint Entropy
DOI:
https://doi.org/10.13053/cys-18-2-1473Keywords:
Feature Selection, Microarray Gene Expression Data, Multivariate Joint Entropy, Simulated AnnealingFeature selection, microarray gene expression data, multivariate joint entropy, simulated annealingAbstract
Microarray classification poses many challenges for data analysis, given that a gene expression data set may consist of dozens of observations with thousands or even tens of thousands of genes. In this context, feature subset selection techniques can be very useful to reduce the representation space to one that is manageable by classification techniques. In this work we use the discretized multivariate joint entropy as the basis for a fast evaluation of gene relevance in a Microarray Gene Expression context. The proposed algorithm combines a simulated annealing schedule specially designed for feature subset selection with the incrementally computed joint entropy, reusing previous values to compute current feature subset relevance. This combination turns out to be a powerful tool when applied to the maximization of gene subset relevance. Our method delivers highly interpretable solutions that are more accurate than competing methods. The algorithm is fast, effective and has no critical parameters. The experimental results in several public-domain microarray data sets show a notoriously high classification performance and low size subsets, formed mostly by biologically meaningful genes. The technique is general and could be used in other similar scenarios.Downloads
Published
2014-06-30
Issue
Section
Articles
License
Hereby I transfer exclusively to the Journal "Computación y Sistemas", published by the Computing Research Center (CIC-IPN),the Copyright of the aforementioned paper. I also accept that these
rights will not be transferred to any other publication, in any other format, language or other existing means of developing.I certify that the paper has not been previously disclosed or simultaneously submitted to any other publication, and that it does not contain material whose publication would violate the Copyright or other proprietary rights of any person, company or institution. I certify that I have the permission from the institution or company where I work or study to publish this work.The representative author accepts the responsibility for the publicationof this paper on behalf of each and every one of the authors.
This transfer is subject to the following conditions:- The authors retain all ownership rights (such as patent rights) of this work, except for the publishing rights transferred to the CIC, through this document.
- Authors retain the right to publish the work in whole or in part in any book they are the authors or publishers. They can also make use of this work in conferences, courses, personal web pages, and so on.
- Authors may include working as part of his thesis, for non-profit distribution only.