Analysis of Genetic Expression with Microarrays using GPU Implemented Algorithms
Abstract
DNA microarrays are used to analyze simultaneously the expression level of thousands of genes under multiple conditions; however, massive amount of data is generated making its analysis a challenge and an ideal candidate for massive parallel processing. Among the available technologies, the use of General Purpose computation on Graphics Processing Units (GPGPU) is an efficient cost-effective alternative, compared to a Central Processing Unit (CPU). This paper presents the implementation of algorithms using Compute Unified Device Architecture (CUDA) to determine statistical significance in the evaluation of gene expression levels for a microarray hybridization experiment designed and carried out at the Centro de Investigaciones Biológicas del Noroeste S.C (CIBNOR). The results with respect to traditional implementations are compared. Los microarreglos de ADN permiten analizar simultáneamente el nivel de expresión de miles de genes ante condiciones múltiples; sin embargo, la gran cantidad dedatos generados representa un reto para su análisis y los hace un candidato ideal para el procesamiento masivo paralelo. Dentro de las tecnologías disponibles, el uso de cómputo en tarjetas gráficas de propósito general(GPGPU), es una alternativa eficiente, en términos de costo-efectividad, comparada con respecto a las unidades de procesamiento central (CPU). Este artículo presenta la implementación de algoritmos utilizando la arquitectura de cómputo unificada (CUDA), para determinar la significancia estadística en la evaluación de niveles de expresión génica para un experimento de hibridación de microarreglos, diseñado y llevado a cabo en el Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Los resultados obtenidos se comparan con respecto a las implementaciones tradicionales. Palabras clave. GPU,Microarreglos, CUDA.
Keywords
GPU, Microarray, CUDA